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Abstract

The paper establishes an equivalence between pure point diffraction and certain types of model sets, called inter-model sets,
in the context of substitution point sets and substitution tilings. The key ingredients are a new type of coincidence condition
in substitution point sets, which we call algebraic coincidence, and the use of a recent characterization of model sets through
dynamical systems associated with the point sets or tilings.
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1. Introduction

In the study of aperiodic order, there has been considerable interest in understanding the structure of point sets
which have pure point diffraction spectrum. The pure point peaks in the diffraction spectrum are indicative of a highly
ordered structure of the point sets, and the pure point diffraction spectrum has provided a new viewpoint for looking
at ordered structures. Independent of the diffraction spectrum, there is the spectral theory of dynamical system that
arises as the completion of the translational orbit of a point set in the standard Radin–Wolff-type topology [28]. It
turns out that pure point dynamical and diffraction spectra are equivalent in quite a general setting (see [22,12,2]). In
particular, in substitution point sets, the two types of pure point spectra are equivalent, though not equal usually.

There is a large class of point sets which come from cutting and projecting a lattice in a “higher dimensional” space
Rd
× H into the two lower dimension spaces Rd and H , where H is a locally compact Abelian group. Discrete point

sets in Rd are obtained by restricting the projection, which maps from Rd
× H to Rd , to some part of a lattice lying in

a cylinder of the form Rd
×W , where the window W ⊂ H has non-empty interior and compact closure. If a discrete

point set in Rd comes from this projection and its window has the boundary of measure zero, we call it a regular
model set (see Section 2 for precise definitions). This has provided a general way of obtaining point sets which have
the property of pure point dynamical spectrum (see [14,29,6,20,23]). The inversion problem, that is, determining the
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structure of a discrete set knowing that it is pure point diffractive, is in general impossible to solve. However, with
added ingredients it is possible to infer information about the nature of a set from pure point diffractivity. One such
piece of information that we can now determine, and that is the aim of this paper to prove, is the structural type of the
diffracting set — namely that it is a model set, as long as we have the added ingredient of a primitive substitution.

There is a recent characterization of model sets through the use of dynamical systems associated with point sets
in [3] and with multi-colour point sets in [21]. The notion of inter-model sets is introduced in [21] (under the name of
model sets) and [3] as a model set satisfying a topological condition which is less restrictive than the boundary condi-
tion of a regular model set. In this paper we consider the inter-model sets (see Definition 2.1) and show the equivalence
between inter-model sets and pure point dynamical spectrum in the context of primitive substitution point sets.

The main ingredient that establishes the connection between inter-model set and pure point dynamical spectrum
is algebraic coincidence. In the literature there are many types of coincidences for substitution point sets and tilings
which are equivalent to the property of pure point dynamical spectrum of these sets (see [10,7,31,23,8]). For example,
in the class of constant length symbolic substitutions Dekking’s coincidence condition is well known. It says the
following: suppose that A = {a1, . . . , am} is a finite alphabet with associated set of words A∗, and we are given a
primitive substitution σ : A → A∗ for which the length l of each word σ(ai ) is same, so called “constant length
substitution”, and the height is 1. Then the associated substitution dynamical system has pure point spectrum if and
only if it admits a coincidence, in the sense that there is k ∈ Z+ such that k ≤ ln for some n and the k-th letter of each
word σ n(ai ), i ≤ m, is same. Although the various types of the coincidences are defined in slightly different ways,
they fulfill a similar property for pure point dynamical spectrum. In the case of substitution point sets on lattices it is
established through modular coincidence that regular model set is necessary and sufficient for pure point dynamical
spectrum and it is shown that the modular coincidence is computable [23,11]. However there are many examples
of substitution point sets and tilings whose underlying structures are not on lattices. For general substitution point
sets we introduce in this paper a new type of coincidence called algebraic coincidence, whose name comes from the
algebraic structure of the point sets, which makes the construction of locally compact Abelian groups and cut and
project schemes possible. The Fibonacci substitution sequence is a well-known example of this kind.

Although we are primarily interested in and dealing with Delone multi-colour sets, we need to introduce tilings
along the way. It is often advantageous to work with tilings in getting spatial properties of point sets. However it is not
necessarily true that a substitution point set can be represented by a tiling in such a way that every point of one type
point set is represented by a tile of the same type. In [18], Lagarias and Wang have given a sufficient condition for a
substitution point set to be represented by a substitution tiling while maintaining its iteration rules. They call it a self-
replicating Delone set. In [23] it is shown that a repetitive substitution point set can be represented by a substitution
tiling when a concept called legality of clusters applies. We will talk more about this passage from point sets to tilings
in Section 2.3. We make use of this connection in order to derive properties that we need in substitution point sets
from substitution tilings.

The main theorem in this paper states (see Theorem 5.3) :

Theorem. Let 3 be a primitive substitution Delone multi-colour set in Rd such that every 3-cluster is legal and 3

has finite local complexity. Then the following are equivalent:

(1) 3 has pure point dynamical spectrum;
(2) 3 admits an algebraic coincidence;
(3) 3 is an inter-model multi-colour set.

There are several recent results in the area that we use as new ingredients for the proof of the main theorem. We
briefly explain them here.

We can construct two dynamical hulls generated by a point set, using two different topologies. One is a local
topology, which defines the closeness of point sets by agreement on large regions around the origin up to small
shifts, and the other is a global topology, called the autocorrelation topology, which defines the closeness of point sets
looking at how much they agree density-wise up to small shifts. In [3] conditions under which there exists a continuous
mapping between the two dynamical hulls are given. In [21], it is shown that this mapping derives inter-model sets
from model sets which are projected from open windows.

A Delone set Λ is called a Meyer set if Λ−Λ is uniformly discrete. The Meyer property is used significantly in the
main theorem to show the equivalence between overlap coincidence on substitution tilings and algebraic coincidence
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on substitution point sets, as well as in [3] and [21] which call upon. However, in [24] it is shown that any substitution
point set with pure point dynamical spectrum necessarily has the Meyer property, so we do not need to assume it
additionally in the main theorem.

We consider two topologies on the group L generated by the translation vectors of a substitution point set, thereby
constructing two locally compact Abelian groups which may be used for defining CPSs. We call one Q-topology
and the other Pε-topology. In general, these two topologies on substitution point sets are different. But under the
assumption of pure point spectrum, they are equivalent. Since model sets are always associated with their CPSs, it is
important to notice from which CPS a model set arises. The equivalence of the two topologies gives us the same CPS,
and this allows us to freely use the related results in [3,21].

The proof of the theorem is spread over several sections. The structure of it is as follows: On substitution tilings it
is known that overlap coincidence is a necessary and sufficient condition for pure point dynamical spectrum [31]. We
introduce algebraic coincidence in substitution point sets, which is a concept parallel to overlap coincidence, and in
Section 3 show the equivalence between (1) and (2) of the theorem. Proposition 3.10 plays an important role in making
connection between algebraic coincidence and pure point spectrum. In Section 4, we assume algebraic coincidence
in 3 and construct a CPS whose internal space is a completion of a topological group L with the Q-topology. We
then show that there exists a Delone multi-colour point set 0, in a local dynamical hull generated by 3 which is a
model set with an open window in the CPS. We consider another topology (Pε-topology) on L relative to which L
becomes a topological group and show in Section 4.4 that the two topological spaces L are in fact isomorphic. So
both topologies lead to the same completion of L . It is a locally compact Abelian group and we can construct a CPS
taking this completed space as an internal space. In Section 4.5 we apply the results of [3,21], which are associated
with the Pε-topology, so that we get a condition for 3 to be an inter-model multi-colour set. We observe that algebraic
coincidence is sufficient for that condition to be fulfilled in substitution point sets. We also show that the algebraic
coincidence is necessary to obtain the inter-model multi-colour set in Section 5.

The paper concludes with some unresolved questions (particularly on the nature of the boundaries of the windows
of the inter-model sets appearing in the theorem) and outlook for future work.

2. Preliminaries

Much of the terminology being introduced in this section is standard and defined precisely in [23]. We refer the
reader to [23] for more detailed definitions and to [17] for the standard concepts of discrete geometry in the aperiodic
setting.

2.1. Delone multi-colour sets

A multi-colour set or m-multi-colour set in Rd is a subset 3 = Λ1 × · · · × Λm ⊂ Rd
× · · · × Rd (m copies)

where Λi ⊂ Rd . We also write 3 = (Λ1, . . . ,Λm) = (Λi )i≤m . Recall that a Delone set is a relatively dense and
uniformly discrete subset of Rd . We say that 3 = (Λi )i≤m is a Delone multi-colour set in Rd if each Λi is Delone
and supp(3) :=

⋃m
i=1 Λi ⊂ Rd is Delone. A cluster of 3 is, by definition, a family P = (Pi )i≤m where Pi ⊂ Λi

is finite for all i ≤ m. Many of the clusters that we consider have the form 3 ∩ A := (Λi ∩ A)i≤m , for a bounded
set A ⊂ Rd . The translate of a cluster P by x ∈ Rd is x + P = (x + Pi )i≤m . We say that two clusters P and P′ are
translationally equivalent if P = x + P′ for some x ∈ Rd . For any two Delone m-multi-colour sets 3 and 0, we
define 3 ∩ 0 = (Λi ∩ Γi )i≤m and 340 = (Λi4Γi )i≤m , where Λi4Γi = (Λi \ Γi ) ∪ (Γi \ Λi ). We write BR(y) for
the open ball of radius R centered at y and use also BR for BR(0). We define Ξ (3) :=

⋃
i≤m(Λi − Λi ). We say that

Λ ⊂ Rd is a Meyer set if it is a Delone set and Λ − Λ ⊂ Λ + F for some finite set F , equivalently, if it is a Delone
set and Λ − Λ is uniformly discrete (see [16,25]). We say 3 = (Λi )i≤m a Meyer multi-colour set if each component
Λi , i ≤ m, is a Meyer set and supp(3) is a Meyer set. A multi-colour set 3 is said to be non-periodic if there is no
non-zero x ∈ Rd such that 3+ x = 3.

A cut and project scheme (CPS) consists of a collection of spaces and mappings as follows;

Rd π1
←− Rd

× H
π2
−→ H⋃

L̃

(2.1)
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where Rd is a real Euclidean space, H is some locally compact Abelian group, π1 and π2 are the canonical projections,
L̃ ⊂ Rd

×H is a lattice, i.e. a discrete subgroup for which the quotient group (Rd
×H)/L̃ is compact, π1|L̃ is injective,

and π2(L̃) is dense in H .
We call Rd a physical space and H an internal space. For a subset V ⊂ H , we denote Λ(V ) := {π1(x) ∈ Rd

: x ∈
L̃, π2(x) ∈ V }. We call the subset V a window of Λ(V ). A model set in Rd is a subset Γ of Rd for which Γ = Λ(V )
where V ⊂ H has non-empty interior and compact closure. The model set Γ is regular if the boundary ∂W = W \W ◦

of W is of (Haar) measure 0.

Definition 2.1. An inter-model set is a subset Γ of Rd for which s + Λ(W ◦) ⊂ Γ ⊂ s + Λ(W ) for some s ∈ Rd ,
where W is compact in H and W = W ◦ 6= ∅, with respect to CPS (2.1).

We say that 0 is a model multi-colour set (resp. inter-model multi-colour set) if each Γi is a model set (resp. inter-
model set) with respect to the same CPS (see [26,21,3] for more about model sets). One should note here that since
π2 need not be 1− 1 on L̃ in CPS, the notion of inter-model set, which is hemmed in between two such sets differing
only by points on the boundary of the window W , arises naturally. When it is important to note which CPS a model
set arises from, we will explicitly mention the CPS.

Let 3 be a Delone multi-colour set. We say that 3 has finite local complexity (FLC) if for every R > 0
there exists a finite set Y ⊂ supp(3) =

⋃m
i=1 Λi such that for all x ∈ supp(3), there exists y ∈ Y for which

BR(x) ∩ 3 = (BR(y) ∩ 3) + (x − y). Also we say that 3 is repetitive if for every compact set K ⊂ Rd ,
{t ∈ Rd

: 3 ∩ K = (t +3) ∩ K } is relatively dense. For a cluster P and a bounded set A ⊂ Rd , let

LP(A) := ]{x ∈ Rd
: x + P ⊂ A ∩3},

where ] means the cardinality. A van Hove sequence for Rd is a sequence F = {Fn}n≥1 of bounded measurable
subsets of Rd satisfying

lim
n→∞

Vol((∂Fn)
+r )/Vol(Fn) = 0, for all r > 0, (2.2)

where (∂Fn)
+r
:= {x ∈ Rd

: dist(x, ∂Fn) ≤ r}. We define

dens(3) := lim
n→∞

](3 ∩ Fn)

Vol(Fn)
,

if the limit exists. We say that 3 has uniform cluster frequencies1 (UCF) relative to {Fn}n≥1 if for any cluster P, there
exists the limit

freq(P,3) = lim
n→∞

LP(x + Fn)

Vol(Fn)
,

uniformly in x ∈ Rd .
Let X3 be the collection of all Delone multi-colour sets each of whose clusters is a translate of a 3-cluster. We

introduce a metric on Delone multi-colour sets in a simple variation of the standard way: for Delone multi-colour sets
31, 32 ∈ X3,

d(31,32) := min{d̃(31,32), 2−1/2
}, (2.3)

where

d̃(31,32) = inf{ε > 0 : ∃x, y ∈ Bε(0), B1/ε(0) ∩ (−x +31) = B1/ε(0) ∩ (−y +32)}.

For the proof that d is a metric, see [22]. Observe that X3 = {−h +3 : h ∈ Rd} where the closure is taken in the
topology induced by the metric d . For more general topology defined by uniformity, see [21,29,3]. We have a natural
action of Rd on the dynamical hull X3 of 3 by translations which makes it a topological dynamical system (X3,Rd).
With FLC, X3 is a compact space.

1 Here we define UCF with one fixed van Hove sequence. However it is implicit from [22] that UCF for the Delone multi-colour set with FLC
does not depend on the choice of van Hove sequence.



J.-Y. Lee / Journal of Geometry and Physics 57 (2007) 2263–2285 2267

Let (X3, µ,Rd) be a measure preserving dynamical system. We consider the associated group of unitary operators
{Tx }x∈Rd on L2(X3, µ):

Tx g(3′) = g(−x +3′).

Every g ∈ L2(X3, µ) defines a function on Rd by x 7→ 〈Tx g, g〉. This function is positive definite on Rd , so its
Fourier transform is a positive measure σg on Rd called the spectral measure corresponding to g. The dynamical
system (X3, µ,Rd) is said to have pure point spectrum if σg is pure point for every g ∈ L2(X3, µ).2We recall that
g ∈ L2(X3, µ) is an eigenfunction for the Rd -action if for some α = (α1, . . . , αd) ∈ Rd ,

Tx g = e2π ix ·αg for all x ∈ Rd ,

where x · α is the standard inner product on Rd .

2.2. Tilings

We begin with a set of types (or colours) {1, . . . ,m}, which we fix once and for all. A tile in Rd is defined as a pair
T = (A, i) where A = supp(T ) (the support of T ) is a compact set in Rd , which is the closure of its interior, and
i = l(T ) ∈ {1, . . . ,m} is the type of T . We let g + T = (g + A, i) for g ∈ Rd . We say that a set P of tiles is a patch
if the number of tiles in P is finite and the tiles of P have mutually disjoint interiors. The support of a patch is the
union of the supports of the tiles that are in it. The translate of a patch P by g ∈ Rd is g + P := {g + T : T ∈ P}.
We say that two patches P1 and P2 are translationally equivalent if P2 = g + P1 for some g ∈ Rd . A tiling of Rd

is a set T of tiles such that Rd
=
⋃
{supp(T ) : T ∈ T } and distinct tiles have disjoint interiors. Given a tiling T , a

finite set of tiles of T is called T -patch. We define FLC, repetitivity, and uniform patch frequencies (UPF), which is
the analog of UCF, on tilings in the same way as the corresponding properties on Delone multi-colour sets. The types
(or colours) of tiles on tilings have the same concept as the colours of points on Delone multi-colour sets. We always
assume that any two T -tiles with the same colour are translationally equivalent (hence there are finitely many T -tiles
up to translations).

For a subset S of a tiling and A ⊂ Rd , we define

S ∩ A := {T ∈ S : (supp(T ))◦ ∩ A 6= ∅}

and for tilings T and T ′, we use T ∩T ′∩ A for (T ∩T ′)∩ A. For any patch P , we write Vol(P) for Vol(
⋃
{supp(T ) :

T ∈ P}). Just as for point sets, for any D ⊂ T , we define

dens(D) := lim
n→∞

Vol(D ∩ Fn)

Vol(Fn)
and freq(P, T ) := lim

n→∞

L P (Fn)

Vol(Fn)
,

if the limits exist. Let XT be the collection of all tilings each of whose patches is a translate of T -patch. We define a
metric d on tilings, given analogously to (2.3) for Delone multi-colour sets: for tilings T , S ∈ XT ,

d(T ,S) := min{d̃(T ,S), 2−1/2
}, (2.4)

where

d̃(T ,S) = inf{ε > 0 : ∃x, y ∈ Bε(0), (−x + T ) ∩ B1/ε(0) = (−y + S) ∩ B1/ε(0)}.

We define the dynamical hull (XT ,Rd) of T in the same way as of Delone multi-colour sets (see [31]). Also we have
the equivalent notion of pure point spectrum on tilings.

2.3. Substitutions

2.3.1. Substitutions on Delone multi-colour sets
We say that a linear map Q : Rd

→ Rd is expansive if there is a c > 1 with

e(Qx, Qy) ≥ c · e(x, y) (2.5)

2 We also say that 3 has pure point spectrum if σg is pure point for every g ∈ L2(X3, µ).
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for all x, y ∈ Rd and some metric e on Rd compatible with the standard topology. This is equivalent to saying that all
the eigenvalues of Q lie outside the closed unit disk in C.

Definition 2.2. 3 = (Λi )i≤m is called a substitution Delone multi-colour set if 3 is a Delone multi-colour set and
there exist an expansive map Q : Rd

→ Rd and finite sets Di j for i, j ≤ m such that

Λi =

m⋃
j=1

(QΛ j +Di j ), i ≤ m, (2.6)

where the unions on the right-hand side are disjoint.

We say that the substitution Delone multi-colour set is primitive if the corresponding substitution matrix S,
with Si j = ](Di j ), is primitive. For any given substitution Delone multi-colour set 3 = (Λi )i≤m , we define
Φi j = { f : x 7→ Qx + a : a ∈ Di j }. Then Φi j (Λ j ) = QΛ j + Di j , where i ≤ m. We define Φ an m × m array for
which each entry is Φi j , and call Φ a matrix function system (MFS) for the substitution. For any k ∈ Z+ and x ∈ Λ j
with j ≤ m, we let Φk(x) = Φk−1((Φi j (x))i≤m). For any k ∈ Z+, Φk(3) = 3 and Φk(Λ j ) =

⋃
i≤m(Q

kΛ j+(Dk)i j )

where

(Dk)i j =
⋃

n1,n2,...,n(k−1)≤m
(Din1 + QDn1n2 + · · · + Qk−1Dn(k−1) j ).

We say that a cluster P is legal if it is a translate of a subcluster of a cluster generated from one point of 3,
i.e. a + P ⊂ Φk(x) for some k ∈ Z+, a ∈ Rd and x ∈ 3.

2.3.2. Substitutions on tilings

Definition 2.3. LetA = {T1, . . . , Tm} be a finite set of tiles in Rd such that Ti = (Ai , i); we will call them prototiles.
Denote by PA the set of patches made of tiles each of which is a translate of one of Ti ’s. We say that ω : A→ PA is
a tile-substitution (or simply substitution) with expansive map Q if there exist finite sets Di j ⊂ Rd for i, j ≤ m, such
that

ω(T j ) = {u + Ti : u ∈ Di j , i = 1, . . . ,m} (2.7)

with

Q A j =

m⋃
i=1

(Di j + Ai ) for j ≤ m.

Here all sets in the right-hand side must have disjoint interiors; it is possible for some of the Di j to be empty.

Note that Q A j = supp(ω(T j )) = Qsupp(T j ). The substitution (2.7) is extended to all translates of prototiles by

ω(x + T j ) = Qx + ω(T j ), (2.8)

in particular,

supp(ω(x + T j )) = supp(Qx + ω(T j )) = Qx + Qsupp(T j ) = Q(x + supp(T j )), (2.9)

and to patches and tilings by ω(P) = ∪{ω(T ) : T ∈ P}. The substitution ω can be iterated, producing larger and
larger patches ωk(T j ).

We define the substitution matrix and primitivity of ω in the similar way as in substitution Delone multi-colour
sets. We say that T is a substitution tiling if T is a tiling and ω(T ) = T with some substitution ω. We say that a patch
P is legal if it is a translate of a subpatch of ωk(Ti ) for some i ≤ m and k ≥ 1. This is the analog of a legal cluster on
Delone multi-colour sets.



J.-Y. Lee / Journal of Geometry and Physics 57 (2007) 2263–2285 2269

2.3.3. Representability of 3 as a tiling
Let 3 be a substitution Delone multi-colour set. One can set up an adjoint system of equations

Q A j =

m⋃
i=1

(Di j + Ai ), j ≤ m (2.10)

from the Eq. (2.6). It is known that (2.10) always has a unique solution for which A = {A1, . . . , Am} is a family of
non-empty compact sets of Rd (see for example [5], Prop. 1.3). It is proved in [18, Th. 2.4 and Th. 5.5] that under the
condition of primitivity, all the sets Ai from (2.10) have non-empty interiors and, moreover, each Ai is the closure
of its interior. We say that 3 is representable (by tiles) if 3 + A := {x + Ti : x ∈ Λi , i ≤ m} is a tiling of Rd ,
where Ti = (Ai , i), i ≤ m, and Ai ’s arise from the solution to the adjoint system (2.10) and A = {Ti : i ≤ m}. One
can define a tile-substitution ω satisfying ω(3 + A) = 3 + A from (2.10). So 3 + A is a substitution tiling. We
call 3 + A the associated substitution tiling of 3. In [18, Lemma 3.2] it is shown that if 3 is a substitution Delone
multi-colour set, then there is a finite multi-colour set (cluster) P ⊂ 3 for which Φn−1(P) ⊂ Φn(P) for n ≥ 1 and
3 = limn→∞ Φn(P). We call such a multi-colour set P a generating set for 3.

Theorem 2.4 ([23]). Let 3 be a repetitive primitive substitution Delone multi-colour set. Then every 3-cluster is
legal if and only if 3 is representable.

Note that in order to check that every 3-cluster is legal, it suffices to check if a cluster containing a finite generating
set for 3 is legal (see [23]).

Remark 2.5. Throughout this paper we are mainly interested in primitive substitution Delone multi-colour sets 3

such that every 3-cluster is legal. Since 3 is representable, we will often identify 3 with the associated substitution
tilings T = 3+A = {x + Ti : x ∈ Λi , i ≤ m}, where Ti ’s are the tiles arising from the solution of the adjoint system
of equations.

For a primitive representable substitution Delone multi-colour set 3, the dynamical system (X3,Rd) is unique
ergodic. Similarly the dynamical system (XT ,Rd) of any primitive substitution tiling T is uniquely ergodic [23].

3. Algebraic coincidence and pure point spectrum

For substitution tilings overlap coincidence was introduced in [31]. The overlap coincidence has been a central
concept connecting the asymptotic behavior of Q-iterates of almost-periods of tilings with pure pointedness of the
spectrum of dynamical systems generated by the tilings (see [31,23]). Here we introduce a new coincidence condition
for substitution Delone multi-colour sets and show that it is equivalent to the overlap coincidence when the substitution
Delone multi-colour sets are representable.

Let T be a tiling and Ξ (T ) be the set of translation vectors between T -tiles of the same type:

Ξ (T ) := {x ∈ Rd
: ∃T, T ′ ∈ T , T ′ = x + T }. (3.1)

Since T has the inflation symmetry with the expansive map Q, we have that QΞ (T ) ⊂ Ξ (T ). Note also that
Ξ (T ) = −Ξ (T ). If T = 3 + A is an associated substitution tiling of 3, then Ξ (T ) =

⋃m
i=1(Λi − Λi ). Recall

that ωT = T , where ω is the tile-substitution coming from the adjoint system of equations.

Definition 3.1. Let T be a tiling. A triple (T, y, S), with T, S ∈ T and y ∈ Ξ (T ), is called an overlap if
supp(y + T ) ∩ supp(S) has non-empty interior. We say that two overlaps (T, y, S) and (T ′, y′, S′) are equivalent
if for some g ∈ Rd we have y + T = g + y′ + T ′, S = g + S′. Denote by [(T, y, S)] the equivalence
class of an overlap. An overlap (T, y, S) is a coincidence if y + T = S. The support of an overlap (T, y, S) is
supp(T, y, S) = supp(y + T ) ∩ supp(S).

LetO = (T, y, S) be an overlap. Recall that for a tile-substitution ω, ω(y+T ) = Qy+ω(T ) is a patch of Qy+T ,
and ω(S) is a T -patch, and moreover,

supp(Qy + ω(T )) ∩ supp(ω(S)) = Q(supp(T, y, S)).
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For each l ∈ Z+,

Ql(O) = {(T ′, Ql y, S′) : T ′ ∈ ωl(T ), S′ ∈ ωl(S), supp(Ql y + T ′) ∩ supp(S′) 6= ∅}.

Definition 3.2. We say that a substitution tiling T admits an overlap coincidence if there exists l ∈ Z+ such that for
each overlap O in T , Ql(O) contains a coincidence.

Theorem 3.3 ([23, Th. 4.7 and Lemma A.9]). Let T be a repetitive fixed point of a primitive substitution such that
Ξ (T ) is a Meyer set. Then (XT ,Rd , µ) has a pure point dynamical spectrum if and only if T admits an overlap
coincidence.

Theorem 3.4 ([24]). Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal and
3 has FLC. Suppose that (X3,Rd , µ) has a pure point dynamical spectrum. Then Λ =

⋃
i≤m Λi and Ξ (3) are

Meyer sets.

From the result of Theorem 3.4, we can get the following corollary of Theorem 3.3 dropping the Meyer condition.

Corollary 3.5. Let T be a repetitive fixed point of a primitive substitution with FLC. Then (XT ,Rd , µ) has a pure
point dynamical spectrum if and only if T admits an overlap coincidence.

Proof. We first note that when we replace the third condition of [23, Lemma A.9] by the overlap coincidence that we
define here, Lemma A.9 in [23] holds without the assumption of the Meyer property. So applying [31, Th. 6.1], we
can see that the necessity direction holds. The sufficiency follows from Theorems 3.3 and 3.4. �

Combining Theorem 3.4 and Corollary 3.5, we observe the following.

Corollary 3.6. Let T be a repetitive fixed point of a primitive substitution with FLC. If T admits an overlap
coincidence, then Ξ (T ) is a Meyer set. �

Lemma 3.7 ([23, Lemma A.8]). Let T be a tiling such that Ξ (T ) is a Meyer set. Then the number of equivalence
classes of overlaps for T is finite.

Definition 3.8. Let 3 be a primitive substitution Delone multi-colour set with expansive map Q. We say that 3 admits
an algebraic coincidence if there exist M ∈ Z+ and ξ ∈ Λi for some i ≤ m such that ξ + QMΞ (3) ⊂ Λi . We say
that 3 admits an algebraic coincidence at ξ , when we need to emphasize the role of ξ for the algebraic coincidence.

Lemma 3.9. Let 3 be a primitive substitution Delone multi-colour set with expansive map Q. If 3 admits an
algebraic coincidence, then Ξ (3) is a Meyer set and thus 3 has FLC.

Proof. By the assumption, there exist M ∈ Z+ and ξ ∈ Λi for some i ≤ m such that ξ + QMΞ (3) ⊂ Λi .
Since 3 is a Delone multi-colour set, QMΞ (3) is uniformly discrete. So Ξ (3) is uniformly discrete. Note that
QMΞ (3)− QMΞ (3) ⊂ Λi −Λi ⊂ Ξ (3). Thus Ξ (3)−Ξ (3) is uniformly discrete, i.e. Ξ (3) is a Meyer set. Then
it is easy to see that 3 has FLC. �

We now connect overlap coincidence with algebraic coincidence. For this connection, the condition of Ξ (3) being
a Meyer set is strongly used.

Proposition 3.10. Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal and 3

has FLC. Suppose that the associated substitution tiling T = 3 +A admits an overlap coincidence. Then 3 admits
an algebraic coincidence.

Proof. We first sketch the idea of the proof. First, we note that Ξ (T ) is a Meyer set by Corollary 3.6. From Lemma 3.7,
there are only finitely many possible overlaps in T . We start with any non-empty patch P in T . As T is translated
by the vectors in Ξ (T ) and intersects with T , we get certain configurations of overlaps on supp(P). There are only
finitely many possible configurations of overlaps on supp(P) that arise this way. When each configuration of overlaps
on supp(P) is enlarged enough by applying the substitution repeatedly, there are many coincidences of overlaps
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occurring in the enlarged configuration. Ultimately they cover most of the volume of the enlarged configuration, due
to the assumption of overlap coincidence (see [23, Lemma A.9]). But the number of configurations of overlaps on
supp(P) stays the same as we enlarge them. So when we intersect all the coincidences of overlaps in the enlarged
configuration for all the translational vectors in Ξ (T ), we get a non-empty set. This implies that there exists at least one
tile in T whose translations by the translational vectors of QMΞ (T ) are all in T . This implies algebraic coincidence
for 3.

Now we give a detailed proof. We consider the associated substitution tiling T = 3 + A of 3 and choose any
non-empty patch P in T . Note that Ξ (T ) = Ξ (3). Consider the collection of patches of translates of T on supp(P).

H = {(α + T ) ∩ supp(P) : α ∈ Ξ (T )}.

Since Ξ (T ) is a Meyer set, the number of translationally equivalent classes of overlaps for T is finite by Lemma 3.7.
It is important to note as a result of this that H consists of only finitely many patches. Notice that this is more than
just saying that there are finitely many translational classes of patches, which simply means the FLC of 3. Thus we
can find α1, . . . , αK ∈ Ξ (T ) such that for any α ∈ Ξ (T ),

(α + T ) ∩ supp(P) = (αk + T ) ∩ supp(P) for some k ≤ K . (3.2)

For any n ∈ Z+, we get

ωn((α + T ) ∩ supp(P)) = ωn((αk + T ) ∩ supp(P)). (3.3)

Looking at the set of (3.3) on the compact set Qnsupp(P), we get from ωnT = T and (2.8) that

(Qnα + T ) ∩ Qnsupp(P) = (Qnαk + T ) ∩ Qnsupp(P).

Then

T ∩ (Qnα + T ) ∩ Qnsupp(P) = T ∩ (Qnαk + T ) ∩ Qnsupp(P). (3.4)

Let

DQnα := T ∩ (Qnα + T ) ∩ Qnsupp(P), (3.5)

for any α ∈ Ξ (T ). Then from (3.2),

⋂
α∈Ξ (T )

DQMα =

K⋂
k=1

DQMαk
. (3.6)

We claim that there exists M ∈ Z+ such that

K⋂
k=1

DQMαk
6= ∅. (3.7)

Then it implies that there exists T ∈
⋂
α∈Ξ (T ) DQMα from (3.6) and so for any α ∈ Ξ (T ) there exists T ′ ∈ T such

that QMα+ T ′ = T . Note that T = ξ + Ti and T ′ = η+ Ti where ξ, η ∈ Λi for some i ≤ m. So ξ − QMα ∈ Λi and
we can conclude that ξ − QMΞ (3) = ξ + QMΞ (3) ⊂ Λi . Therefore 3 admits an algebraic coincidence.

Now we give the proof of the claim (3.7). We use a type of argument, leading to (3.10), that has been used before
in [31,23]. However it is not in the form that we can make direct use here, so we discuss it again in the form that we
need. Let V0 and V1 be the minimal and maximal volumes of T -tiles respectively. Notice that supp(DQnα) is the union
of supports of coincidences in Qnsupp(P). It is easy to see that coincidence in DQnα leads to other coincidences in
DQn+1α . Thus

Qsupp(DQnα) ⊂ supp(DQn+1α).

Since T admits an overlap coincidence, there exists l ∈ Z+ such that for each overlap O in T , Ql(O) contains a
coincidence. Note that supp(DQn+lα) has more support than Qlsupp(DQnα) from the new coincidence occurring after
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l-step iterations of each non-coincidence overlap, and the volume of the support of the new coincidence is at least V0
for every l-step iteration of each non-coincidence overlap. So we can get the following formula

Vol(DQn+lα)− | det Q|lVol(DQnα) ≥
V0

V1| det Q|l

(
Vol(Qn+lsupp(P))− | det Q|lVol(DQnα)

)
. (3.8)

Letting

b = 1−
V0

V1| det Q|l

and using

Vol(Qn+lsupp(P)) = | det Q|lVol(Qnsupp(P)),

the inequality (3.8) becomes

1−
Vol(DQn+lα)

Vol(Qn+lsupp(P))
≤ b

(
1−

Vol(DQnα)

Vol(Qnsupp(P))

)
. (3.9)

For all n = tl + s ≥ 0 where t ∈ Z+ and 0 ≤ s < l, we obtain from (3.9)

1−
Vol(DQnα)

Vol(Qnsupp(P))
≤ bt

(
1−

Vol(DQsα)

Vol(Qssupp(P))

)
= (b1/ l)tl+s 1

bs/ l

(
1−

Vol(DQsα)

Vol(Qssupp(P))

)
≤ rnc for some r ∈ (0, 1) and c > 0. (3.10)

Thus for any ε > 0, we can find M ∈ Z+ such that for any 1 ≤ k ≤ K ,

1−
Vol(DQMαk

)

Vol(QM supp(P))
< ε.

This implies that

1−
Vol

( K⋂
k=1

DQMαk

)
Vol(QM supp(P))

< εK .

Therefore for small ε > 0
K⋂

k=1

DQMαk
6= ∅,

as we claimed in (3.7). �

We show now the converse direction of Proposition 3.10. From Lemma 3.9, we do not need to additionally assume
the Meyer property of Ξ (3) in the following proposition.

Proposition 3.11. Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal. Suppose
that 3 admits an algebraic coincidence. Then the associated substitution tiling T = 3 + A admits an overlap
coincidence.

Proof. Suppose that there exist M ∈ Z+ and ξ ∈ Λi such that ξ + QMΞ (3) ⊂ Λi for some i ≤ m. Then

QMΞ (3)+ QMΞ (3) = QMΞ (3)− QMΞ (3)
⊂ (Λi − ξ)− (Λi − ξ)

= Λi − Λi ⊂ Ξ (3). (3.11)
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Thus ξ + Q2MΞ (3) + Q2MΞ (3) ⊂ Λi . For any overlap O = (R, y, S) with R, S ∈ T , y ∈ Ξ (3), we can find
M ′ = M ′(O) ≥ 2M so that

T ∩ (QM ′((y + supp(R)) ∩ supp(S))− QM ′ y)

contains at least one ξ + Q2M z + Ti with some z ∈ Λi − Λi , since Q2M (Λi − Λi ) is relatively dense. Then

ξ + Q2M z + Ti ∈ ω
M ′(R).

Note that QΞ (3) ⊂ Ξ (3). So

ξ + Q2M z + QM ′ y ⊂ ξ + Q2MΞ (3)+ Q2MΞ (3) ⊂ Λi

and

ξ + Q2M z + QM ′ y + Ti ∈ ω
M ′(S).

Thus there is a coincidence after the M ′-iteration of the overlap (R, y, S). In particular, since Ξ (3) is a Meyer set,
there are finite equivalence classes of overlaps and so there exists l ∈ Z+ such that for each overlap O in T , Ql(O)
contains a coincidence. Therefore T admits an overlap coincidence. �

Remark 3.12. Note that the legality of every 3-cluster in a primitive substitution Delone multi-colour set 3 implies
the repetitivity of the associated substitution tiling 3+A of 3 and vice versa.

Combining the results of Corollary 3.5 and Propositions 3.10 and 3.11, we get the following theorem.

Theorem 3.13. Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal and 3 has
FLC. Then the following are equivalent:

(1) (X3,Rd , µ) has a pure point dynamical spectrum;
(2) 3 admits an algebraic coincidence. �

4. Algebraic coincidence to inter-model sets

4.1. The Q-topology

Let 3 be a primitive substitution Delone multi-colour set. Define

L := 〈Λ j 〉 j≤m

the group generated by Λ j , j ≤ m, and let

K := {x ∈ Rd
: 3+ x = 3}

be the set of periods of 3. Under the assumption that 3 admits an algebraic coincidence, we introduce a topology
on L and find a completion H of the topological group L such that the image of L is a dense subgroup of H . This
enables us to construct a cut and project scheme (CPS) such that each point set Λi , i ≤ m, arises from the CPS. In the
following lemma we show that the system {α + QnΞ (3) + K : n ∈ Z+, α ∈ L} satisfies the topological properties
for the group L to be a topological group [13,9,15].

Lemma 4.1. Let 3 be a primitive substitution Delone multi-colour set with expansive map Q such that every 3-
cluster is legal. Suppose that 3 admits an algebraic coincidence. Then the system {α+QnΞ (3)+K : n ∈ Z+, α ∈ L}
serves as a neighbourhood base of the topology on L relative to which L becomes a topological group.

Proof. From the assumption of an algebraic coincidence there exist M ∈ Z+ and ξ ∈ Λi such that

QMΞ (3) ⊂ Λi − ξ for some i ≤ m. (4.1)

Consider the family U = {QnΞ (3) + K ⊂ L : n ∈ Z+}. We first note that every finite subfamily of U has a
non-empty intersection. Next we will show that U satisfies the following property : for every U ∈ U and x ∈ U , there
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exist V ∈ U and V ′ ∈ U such that V + V ⊂ U and x + V ′ ⊂ U . Other properties for a prebase of neighbourhoods of
the identity are rather trivial in the Abelian group L . First, note that

QMΞ (3)+ QMΞ (3) ⊂ Ξ (3). (4.2)

Choose arbitrary QnΞ (3)+K ∈ U . Then with V := QM+nΞ (3)+K

V + V = QM+nΞ (3)+K + QM+nΞ (3)+K ⊂ QnΞ (3)+K. (4.3)

Second, let x = Qn(α− β)+ k ∈ QnΞ (3)+K, where α, β ∈ Λ j for some j ≤ m and k ∈ K. Since every 3-cluster
is legal, there exist k ∈ Z+ and a ∈ Λ j − Λ j such that the cluster {α, β} satisfies a + {α, β} ⊂ Φk(ξ) ∩ Λ j for
ξ ∈ Λi as in (4.1). So we can find g ∈ (Φk) j i such that g(ξ) = a + α. From (4.1), g(ξ + QMΞ (3)) ⊂ Λ j . So
a + α + QM+kΞ (3) ⊂ Λ j . Since a + β ∈ Λ j ,

α − β + QM+kΞ (3) = a + α − (a + β)+ QM+kΞ (3) ⊂ Λ j − (a + β) ⊂ Λ j − Λ j .

Therefore with V ′ := QM+k+nΞ (3)+K

x + V ′ = x + QM+k+nΞ (3)+K = Qn(α − β)+ QM+k+nΞ (3)+K ⊂ QnΞ (3)+K.

Therefore the system {α+QnΞ (3)+K : n ∈ Z+, α ∈ L} serves as a prebase of neighbourhoods of the topology on L
relative to which L becomes a topological group. In fact the system becomes a neighbourhood base for the topology,
since for any n′, n ∈ Z+ with n′ ≥ n,

(Qn′Ξ (3)+K) ∩ (QnΞ (3)+K) = Qn′Ξ (3)+K ∈ U . �

We call the topology on L with the neighbourhood base {α + QnΞ (3)+K : n ∈ Z+, α ∈ L}Q-topology.

4.2. Construction of a CPS

Let L ′ = L/K where L and K are defined as in Section 4.1. From [9, III. Section 3.4, Section 3.5] and
Lemma 4.1, we know that there exists a complete Hausdorff topological group of L ′, which we denote by H , for
which L ′ is isomorphic to a dense subgroup of the complete group H (see [4,21]). Furthermore there is a uniformly
continuous mapping ψ : L → H which is the composition of the canonical injection of L ′ into H and the canonical
homomorphism of L onto L ′ for which ψ(L) is dense in H and the mapping ψ from L onto ψ(L) is an open map,
the latter with the induced topology of the completion H . One can directly consider H as the Hausdorff completion
of L vanishing K.

Theorem 4.2. Let 3 be a primitive substitution Delone multi-colour set with expansive map Q. Suppose that 3 admits
an algebraic coincidence. Then there exists a CPS with the locally compact Abelian group H for an internal space
such that for each j ≤ m, Λ j = Λ(V j ) where V j is a compact set in H.

Proof. We claim that for any n ∈ Z≥0, QnΞ (3) + K is precompact. The argument is familiar from [4,21], but we
provide the argument for the completeness. Note that {Qn′Ξ (3)+K : n′ ∈ Z≥0} is a neighbourhood basis for 0. We
will show that for any n′ ∈ Z≥0, QnΞ (3)+ K can be covered by some finite translations of Qn′Ξ (3)+ K. For any
n′ ∈ Z≥0 with n′ ≥ n, there exists a compact set C ⊂ Rd for which Qn′Ξ (3)+C = Rd , since Qn′Ξ (3) is relatively
dense. So for any t ∈ QnΞ (3), t = s + c where s ∈ Qn′Ξ (3) and c ∈ C . Thus

c = t − s ∈ QnΞ (3)− Qn′Ξ (3) ⊂ QnΞ (3)− QnΞ (3).

From the assumption of an algebraic coincidence, there exist M ∈ Z+ and ξ ∈ Λi such that QMΞ (3) ⊂ Λi − ξ for
some i ≤ m. So we get

Qn+MΞ (3)− Qn+MΞ (3) ⊂ Ξ (3). (4.4)

Thus QM c ∈ Ξ (3). Since Ξ (3) is discrete, F := Ξ (3) ∩ QM C is finite and QM c ∈ F . Thus t = s + c ∈
QnΞ (3)+ Q−M F and we obtain that

QnΞ (3)+K ⊂ Qn′Ξ (3)+K + Q−M F.
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Therefore QnΞ (3)+K is precompact. This implies that for each n ∈ Z≥0,

ψ(QnΞ (3)+K) is compact. (4.5)

Define L̃ := {(t, ψ(t)) ∈ Rd
×H : t ∈ L}. Applying the same argument as in [4, Sec. 3], we note that L̃ is a uniformly

discrete and relatively dense subgroup in Rd
× H . Then we can construct a cut and project scheme

Rd π1
←− Rd

× H
π2
−→ H

∪

L ←− L̃ −→ ψ(L)

t ←− (t, ψ(t)) −→ ψ(t)

(4.6)

where π1 and π2 are the canonical projections. It is easy to see that π1|L̃ is injective and π2(L̃) is dense in H . We note
that for each j ≤ m, Λ j = Λ j +K. So Λ j = Λ(ψ(Λ j +K)) and ψ(Λ j +K) is compact in H from (4.5). �

4.3. Existence of model sets

In the proof of the following Lemma 4.3 and Proposition 4.4 we make use of the representability, identifying a
primitive substitution Delone multi-colour set 3 with the associated substitution tiling T = 3+A as in Section 2.3.3
where A is the set of tiles arising from the solution of the adjoint system of equations. Since Φ is primitive, we can
assume that the substitution matrix S(Φ) is positive, replacing Φ by a power of Φ if necessary.

In the next Proposition 4.4 we show that if 3 admits an algebraic coincidence, there exists 0 ∈ X3 which
is generated from one point and admits an algebraic coincidence at the generating point. This enables us in
Proposition 4.5 to show that each point set Γi is a model set whose window is open in H in CPS (4.6).

The following lemma is auxiliary to Proposition 4.4.

Lemma 4.3. Let 3 be a primitive substitution Delone multi-colour set with MFS Φ such that every 3-cluster is legal.
Suppose that supp(η′ + T j ) ⊂ (supp(ωN (η + T j )))

◦ for some η, η′ ∈ Λ j and N ∈ Z+, and f ∈ (ΦN ) j j for which
f (η) = η′. Then there exists 0 = limn→∞(ΦN )n(y) ∈ X3 for some fixed point y of f .

Proof. In this lemma we show how to find a substitution Delone multi-colour set in X3 which is generated by a fixed
point. We can find a fixed point y ∈ Rd of f , since f is an affine map with expansive linear part. Note that

ωN (y + T j ) = {x + Ti : x ∈ (ΦN )i j (y), i ≤ m}

(see [23, Th. 3.7] for the details). So

y + T j ∈ ω
N (y + T j ). (4.7)

Notice that ωN (y+T j ) is translationally equivalent to ωN (η+T j ) and so the relative location of y+T j in ωN (y+T j )

is same as the relative location of η′+ T j in ωN (η+ T j ), since f (η) = η′ and f (y) = y. So from the assumption that
supp(η′ + T j ) ⊂ (QN (supp(η + T j )))

◦,

supp(y + T j ) ⊂ (QN supp(y + T j ))
◦. (4.8)

Now we claim that 0 ∈ (supp(y + T j ))
◦. By (4.8), it is enough to show that

0 ∈ supp(y + T j ). (4.9)

In fact, for any open neighbourhood U of 0, there exists s ∈ Z+ such that

supp(y + T j ) ⊂ QsU.

From (4.7),

Qs N U ∩ Qs N supp(y + T j ) ⊃ Qs N U ∩ supp(y + T j ) 6= ∅.
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Thus

U ∩ supp(y + T j ) 6= ∅

and so the claim is proved. Let T ′ := limn→∞(ω
N )n(y + T j ). Since the generating tile y + T j contains 0 in the

interior, T ′ covers Rd and it is a tiling. Let

0 := lim
n→∞

(ΦN )n(y).

Then 0 is a primitive substitution Delone multi-colour set in X3 generated from y ∈ Γ j . �

In the following proposition we show that the substitution Delone multi-colour set 0 obtained from Lemma 4.3
admits an algebraic coincidence at the point y, using the assumption of the algebraic coincidence of 3.

Proposition 4.4. Let 3 be a primitive substitution Delone multi-colour set with expansive map Q and MFS Φ
for which every 3-cluster is legal. Suppose that 3 admits an algebraic coincidence. Then there exists 0 =

limn→∞(ΦN )n(y) ∈ X3 such that y + QN Ξ (3) ⊂ Γ j for some y ∈ Γ j , j ≤ m and N ∈ Z+.

Proof. By the assumption of algebraic coincidence, there exist M ∈ Z+ and ξ ∈ Λi such that

ξ + QMΞ (3) ⊂ Λi for some i ≤ m. (4.10)

We again consider the associated substitution tiling T := 3+A of 3, whereA = {T1, . . . , Tm}, and let Ai = supp(Ti )

for i ≤ m.
It is shown in [18] that if 3 is a substitution Delone multi-colour set, then there is a finite multiset (cluster) P ⊂ 3

for which 3 = limn→∞ Φn(P). So we can find η ∈ Λ j for some j ≤ m and M ′ ∈ Z+ with M ′ ≥ M such that η+ T j

is fixed under ω and ωM ′(η+T j ) contains ξ +Ti . By the primitivity, we can choose a j-type tile η′+T j in the interior
of ωK (ξ + Ti ) with some K ∈ Z+. So

supp(η′ + T j ) ⊂ (supp(ωK (ξ + Ti )))
◦
⊂ (supp(ωM ′+K (η + T j )))

◦
⊂ (supp(ωN (η + T j )))

◦,

where N = 2(M ′ + K ). From Lemma 4.3, there exists

0 = lim
n→∞

(ΦN )n(y) ∈ X3 (4.11)

for some fixed point y of f where f (η) = η′ and f ∈ (ΦN ) j j . Let T ′ = 0 +A.
We are going to show that 0 admits an algebraic coincidence at y using the algebraic coincidence at ξ for 3 and

using the repetitivity of T . Note that η′ ∈ ΦK (ξ), which means that there exists h ∈ (ΦK ) j i such that η′ = h(ξ). Then
applying MFS Φ to the inclusion by (4.10), we get h(ξ + QMΞ (3)) ⊂ h(Λi ) ⊂ Λ j . Thus η′ + QM+K Ξ (3) ⊂ Λ j .
Then (4.10) we get

η′ + QM+K Ξ (3) ⊂ Λ j .

Since QΞ (3) ⊂ Ξ (3), we have η′ + QM ′+K Ξ (3) ⊂ Λ j . Thus

QM ′+K Ξ (3)− QM ′+K Ξ (3) ⊂ Ξ (3).

Let N = 2(M ′ + K ). So

η′ + QN Ξ (3)− QN Ξ (3) ⊂ Λ j . (4.12)

Note that Ξ (T ′) is also a Meyer set. So as in (3.2) we can find a1, . . . , aS ∈ Ξ (T ′) such that for any a ∈ Ξ (T ′),

T ′ ∩ (y + A j − a)+ a = T ′ ∩ (y + A j − as)+ as for some s ≤ S, (4.13)

where y ∈ Γ j as in (4.11). There exists p ∈ Z+ that (ωN )p(y+T j ) contains the patches of T ′∩(y+A j−a1), . . . , T ′∩
(y + A j − aS) from (4.11). Since T is repetitive, there is r ∈ Rd such that

T ′ ∩ (y + A j − as)+ r ⊂ (ωN )p(y + T j )+ r ⊂ T for all s ≤ S. (4.14)
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Note that y + r + T j , η + T j ∈ T . Take any s ≤ S. Since y + r − η ∈ Ξ (T ), by (4.12) we obtain

η′ + T j + QN (y + r − η)− QN as ∈ T . (4.15)

Now we want to show that the tile on the left-hand side of (4.15) is in a patch ωN (T ′ ∩ (y + A j − as) + r). Since
η′ + T j ∈ ω

N (η + T j ),

η′ + T j + QN (y + r − η)− QN as ∈ ω
N (y + T j + r − as).

Moreover

supp(ωN (y + T j + r − as)) ⊂ supp(ωN (T ′ ∩ (y + A j − as)+ r))

and

ωN ((T ′ ∩ (y + A j − as))+ r) ⊂ T

from (4.14). So we can see that

η′ + T j + QN (y + r − η)− QN as ∈ ω
N (T ′ ∩ (y + A j − as)+ r). (4.16)

Let f : x 7→ QN x + e, where e ∈ Rd . Then we have the identities η′ = QNη+ e and y = QN y + e. Applying these
identities to (4.16), we get, for all s ≤ S,

y + T j ∈ ω
N (T ′ ∩ (y + A j − as)+ as).

Hence through (4.13), for any arbitrary a ∈ Ξ (3),

y + T j ∈ ω
N (T ′ ∩ (y + A j − a)+ a).

Thus y + T j − QN a ∈ ωN (T ′ ∩ (y + A j − a)) ⊂ T ′. Since a is arbitrary in Ξ (0), y + QN Ξ (0) ⊂ Γ j . �

Proposition 4.5. Let 3 be a primitive substitution Delone multi-colour set. Suppose that if 3 = limn→∞ Φn(y)
where y + QMΞ (3) ⊂ Λ j and y ∈ Λ j for some M ∈ Z+ and j ≤ m. Then for each i ≤ m, Λi = Λ(Ui ) in CPS
(4.6) where Ui is an open set and Ui is compact in the internal space H, i.e. Λi is a model set with an open window.

Proof. For each i ≤ m and z ∈ Λi , there exists n ∈ Z+ such that

z = Qn y + e for some e ∈ Rd ,

where f : x 7→ Qn x + e and f ∈ (Φn)i j . From y + QMΞ (3) ⊂ Λ j , z + Qn+MΞ (3) ⊂ Λi . Moreover,
z + Qn+MΞ (3)+K ⊂ Λi , since Λi = Λi +K. Thus

Λi =
⋃

z∈Λi

(z + QMz Ξ (3)+K),

where Mz depends on z. Since ψ is an open map from L onto ψ(L), where the latter is with the induced topology of
the completion H , for each z + QMz Ξ (3)+K there exists an open set Uz in H such that

ψ(z + QMz Ξ (3)+K) = ψ(L) ∩Uz .

Since Ker(ψ) = K and Λi = Λi + K , Λi = ψ−1(ψ(L) ∩ Ui ) = Λ(Ui ) where Ui =
⋃

z∈Λi
Uz . Furthermore

ψ(Λi ) = Ui by the denseness of ψ(L) in H and Ui is compact by (4.5). �

4.4. Two equivalent topologies on L

In this subsection we introduce another topology on L which becomes equivalent to Q-topology under the
assumption of algebraic coincidence. Theorem 4.12 shows a sufficient condition to get inter-model set in general
setting but the CPS in the theorem is constructed based upon on the new topology. The equivalence of the two
topologies gives us the equivalence of the two CPSs. We make use of Theorem 4.12 to get connection to inter-model
multi-colour sets for substitution Delone multi-colour set.
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Let {Fn}n∈Z+ be a van Hove sequence and let 3′,3′′ be two Delone m-multi-colour sets in Rd . We define

ρ(3′,3′′) := lim
n→∞

sup

m∑
i=1

]((Λ′i4Λ′′i ) ∩ Fn)

Vol(Fn)
. (4.17)

Here4 is the symmetric difference operator. Let Pε = {x ∈ L : ρ(x+3,3) < ε} for each ε > 0. From Theorem 3.13
and [23, Lemma A.9], if 3 admits an algebraic coincidence, then, for any ε > 0, Pε is relatively dense. In this case
the system {α+ Pε : ε > 0, α ∈ L} serves as a neighbourhood base of the topology on L relative to which L becomes
a topological group. We name Pε-topology for this topology on L and denote the space L with Pε-topology by L P
(see [4] for Pε-topology under the name of autocorrelation topology).

Let L Q be the space L with Q-topology. In the following two propositions we show that L Q is topologically
isomorphic to L P .

Proposition 4.6. Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal. If 3

admits an algebraic coincidence, then the mapping ι : x 7→ x from L Q onto L P is uniformly continuous.

Proof. It is enough to show that for each ε > 0, there exists n ∈ Z+ such that QnΞ (3)+ K ⊂ Pε . Let T = 3+A
be the associated substitution tiling of 3. The assumption of algebraic coincidence gives overlap coincidence and,
from [23, Lemma A.9], there exist r ∈ (0, 1) and C > 0 such that for any x ∈ Ξ (T )

1− dens(T ∩ (Qn x + T )) ≤ Crn .

Since

dens(T ∩ (Qn x + T )) =
m∑

i=1

freq({Ti , Qn x + Ti }, T ) · Vol(Ai )

and

freq({Ti , Qn x + Ti }, T ) = dens(Λi ∩ (Qn x + Λi )),

we get

1− dens(T ∩ (Qn x + T )) = 1−
m∑

i=1

dens(Λi ∩ (Qn x + Λi )) · Vol(Ai )

=

m∑
i=1

dens(Λi ) · Vol(Ai )−

m∑
i=1

dens(Λi ∩ (Qn x + Λi )) · Vol(Ai )

=

m∑
i=1

1
2
(dens(Λi4(Qn x + Λi ))) · Vol(Ai ).

Let V0 = min{Vol(Ai ) : i ≤ m}. Then

V0 ·

m∑
i=1

1
2
(dens(Λi4(Qn x + Λi ))) ≤ Crn .

So for all x ∈ Ξ (3),

dens(34(Qn x +3)) ≤ C ′rn where C ′ =
2C
V0

> 0.

Then Qn x ∈ PC ′rn and thus for any ε > 0, we can find n ∈ Z+ satisfying C ′rn < ε so that

QnΞ (3)+K ⊂ Pε . �

Proposition 4.7. Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal. If 3

admits an algebraic coincidence, then the mapping ι−1
: x 7→ x from L P onto L Q is uniformly continuous.
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Proof. It is enough to show that for any n ∈ Z+ there exists ε > 0 such that Pε ⊂ QnΞ (3)+ K. For the associated
substitution tiling T = 3+A of 3. Since Ξ (T ) is a Meyer set from Lemma 3.9, we can find small ζ > 0 such that
T ∩ (r + t +T ) = ∅ for all t ∈ Ξ (T ) and r ∈ Bζ (0) \ {0}. From [32, Lemma 3.5 and Th. 2.14], for any 0 < ε ≤

ζ
‖Qn‖

there exists δε > 0 such that if d(T −x, T −(x+ t)) < δε for some x ∈ Rd and t ∈ Ξ (T ), then there exist g j , g′j ∈ K
for 1 ≤ j ≤ n, such that

d

(
T − Q−n x −

n∑
j=1

Q−n+ j−1g j , T − Q−n(x + t)−
n∑

j=1

Q−n+ j−1g′j

)
< ε.

By the metric d on XT of (2.4), there exists h ∈ Bε(0) such that

T − Q−n x −
n∑

j=1

Q−n+ j−1g j − h agrees with T − Q−n(x + t)−
n∑

j=1

Q−n+ j−1g′j on B1/ε(0).

So

T − x −
n∑

j=1

Q j−1g j − Qnh agrees with T − (x + t)−
n∑

j=1

Q j−1g′j on Qn B1/ε(0).

Note that

t −
n∑

j=1

Q j−1g j +

n∑
j=1

Q j−1g′j ∈ Ξ (T ),

since QK ⊂ K and Ξ (T )+K = Ξ (T ). Since ‖Qn
‖ε ≤ ζ and the choice of ξ , Qnh = 0. Thus h = 0. So

Q−n t −
n∑

j=1

Q−n+ j−1g j +

n∑
j=1

Q−n+ j−1g′j ∈ Ξ (T ).

Thus

t = Qnz + w, where z ∈ Ξ (T ) and w =
n∑

j=1

Q j−1(g j − g′j ) ∈ K,

and hence t ∈ QnΞ (T )+K.
If t ∈ Pε , ρ(t + 3,3) < ε. This means that for small ε > 0 there is a big area of overlaps in Rd between t + T

and T so that d(T + x, T + x − t) is small for some x ∈ Rd . So we can choose small ε > 0 so that for any t ∈ Pε ,
d(T +x, T +x− t) < δε for some x ∈ Rd by the definition of Pε . Then t ∈ QnΞ (T )+K. Hence Pε ⊂ QnΞ (3)+K.

�

Remark 4.8. From Propositions 4.6 and 4.7, L P is topologically isomorphic to L Q . Thus the completion of L P is
topologically isomorphic to the completion H of L Q . We will identify the former with H . Thus φ := ψ · ι−1

: L P →

H is uniformly continuous, φ(L P ) is dense in H , and the mapping φ from L P onto φ(L P ) is an open map, the latter
with the induced topology of the completion H . Therefore we can consider the CPS (4.6) with an internal space H
which is a completion of L P . Note that since 3 is repetitive,

⋂
ε>0 Pε = K and K = {0} in L Q .

4.5. Inter-model sets

4.5.1. A continuous map between two dynamical hulls
In this subsection we show that for a primitive substitution Delone multi-colour set 3 with pure point spectrum,

there exists a continuous map from X3 to A(3). This continuous map was first introduced in [3].
Let us define an autocorrelation group A(3). Let D̃ be the set of all Delone m-multi-colour sets in Rd . Define

an equivalence relation on D̃ by 3′ ≡ 3′′ ⇔ ρ(3′,3′′) = 0. Let D := D̃/ ≡ and let ρ also denote the resulting
Rd -invariant metric on D. Now we define a new uniformity on D, which mixes the autocorrelation topology with the
standard topology of Rd using the sets

U (V, ε) = {(3′,3′′) ∈ D ×D : ρ(−v +3′,3′′) < ε for some v ∈ V }
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where ε > 0 and V is a neighbourhood of 0. Then D is a complete space [3] and its elements can be identified as
Delone multi-colour sets in Rd up to density 0 changes. Notice that the topology induced by this uniformity is not
same with the topology (Pε-topology) induced by the metric ρ. We define A(3) as the closure of the orbit Rd

+ 3

with the new uniformity in D (see [3,21,27] for more about A(3)).
The following theorem is proved in [3] in Delone sets with one colour. The argument can be extended into Delone

multi-colour sets without difficulty.

Theorem 4.9. Let 3 be a Delone multi-colour set in Rd with UCF such that Ξ (3) is a Meyer set. If the dynamical
system (X3, µ,Rd) has pure point spectrum with continuous eigenfunctions, then there exists a continuous Rd -map

β : X3→ A(3),

in which β : 0 7→ 0 mod ≡. �

In substitution Delone multi-colour sets the condition of continuous eigenfunctions is already implicit:

Theorem 4.10 ([32, Th. 2.13]). Suppose that 3 is a primitive substitution Delone multi-colour set with FLC such that
every 3-cluster is legal. Then every measurable eigenfunction for the system (X3, µ,Rd) coincides with a continuous
function µ-a.e.

Since a primitive substitution Delone multi-colour set with FLC has UCF (see [23]), we combine Theorems 4.9,
4.10 and 3.4 and get the following corollary.

Corollary 4.11. Let 3 be a primitive substitution Delone multi-colour set with FLC such that every 3-cluster is legal.
If the dynamical system (X3, µ,Rd) has pure point spectrum, then there exists a continuous Rd -map

β : X3→ A(3),

in which β : 0 7→ 0 mod ≡. �

4.5.2. Algebraic coincidence to inter-model sets
In this subsection we show that if a substitution Delone multi-colour set admits an algebraic coincidence then it is

an inter-model multi-colour set.
A continuous Rd -map β : X3 → A(3) is called a torus parametrization on X3.3 An element 0 ∈ X3 is non-

singular for this parametrization if β−1(β({0})) = {0}. The set of non-singular elements of X3 is invariant under the
translation action of Rd .

The result of the following theorem is based on a CPS, taking the completion of L P as an internal space (see [21]).
Since we have shown that the completion of L P is topologically isomorphic to the completion of L Q , we can use the
CPS (4.6) in Theorem 4.12.

Notice that A(3) is isomorphic to a torus (Rd
× H)/L̃ by [21, Prop. 3.2].

Theorem 4.12 ([21, Prop. 4.6]). Let 3 be a multi-colour set in Rd with repetitivity. Suppose that there exists a
continuous Rd -map β : X3 → A(3) and Λ(Vi

◦) ⊂ Λi ⊂ Λ(Vi ) where Vi is compact, Vi
◦
6= ∅, and ∂Vi has

empty interior for each i ≤ m with respect to CPS (4.6). Then there exists a non-singular element 3′ in X3 such that
Λ′i = Λ(Wi ) where Wi is compact and Wi = Wi

◦ for each i ≤ m with respect to the same CPS, and so for each
0 ∈ X3 there exists (−s,−h) ∈ Rd

× H so that

−s + Λ(h +Wi
◦) ⊂ Γi ⊂ −s + Λ(h +Wi ) for each i ≤ m.

In other words, every 0 ∈ X3 is an inter-model multi-colour set.

3 The terminology of a torus parametrization arises from the model set cases first studied where (in the set-up that we have here) A(3) would
have been a torus.
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Theorem 4.13. Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal. Suppose
that 3 admits an algebraic coincidence. Then for each 0 ∈ X3 there exists (−s,−h) ∈ Rd

× H satisfying

−s + Λ(h +Wi
◦) ⊂ Γi ⊂ −s + Λ(h +Wi ) for each i ≤ m,

where Wi is compact and Wi = Wi
◦
6= ∅, with respect to the CPS (4.6). In other words, every 0 ∈ X3 is an

inter-model multi-colour set. In particular, 3 is an inter-model multi-colour set.

Proof. From Propositions 4.4 and 4.5, there exists 3′ ∈ X3 for which each Λ′i = Λ(Vi ), where Vi 6= 0 is an open set
and Vi is compact in H . Here we note that the boundary ∂Vi of the open set Vi has empty interior. Note that algebraic
coincidence implies pure point dynamical spectrum by Theorem 3.13. Applying Corollary 4.11 and Theorem 4.12 to
3′, we complete the proof of the theorem. �

5. Inter-model sets to algebraic coincidence

We will show that if a substitution Delone multi-colour set 3 is an inter-model multi-colour set then 3 admits an
algebraic coincidence.

For each compact set K ⊂ Rd , we define

TK (3) := {t ∈ L : t + (3 ∩ K ) = 3 ∩ (t + K )}.

We prove the following auxiliary lemma for Theorem 5.2.

Lemma 5.1. Let 3 be a Delone multi-colour set in Rd . Suppose that for each i ≤ m, Λ(Wi
◦) ⊂ Λi ⊂ Λ(Wi ) for

some compact set Wi 6= ∅ with Wi = Wi
◦, in some CPS. Then TF (3)− TF (3) ⊂ −ξ + Λ j for some compact set F

and ξ ∈ Λ(Wi
◦).

Proof. For any t ∈ TK (3), t + (3 ∩ K ) ⊂ 3 ∩ (t + K ) and t + (3 ∩ K ) ⊃ 3 ∩ (t + K ). So for each i ≤ m,

ψ(t)+ ψ(s) ∈ Wi ∀s ∈ Λi ∩ K and
ψ(t)+ ψ(s) 6∈ Wi

◦
∀s ∈ (L \ Λi ) ∩ K .

Let

Wi,K :=
⋂
{−ψ(s)+Wi : s ∈ Λi ∩ K } \

⋃
{−ψ(s)+Wi

◦
: s ∈ (L \ Λi ) ∩ K },

for each i ≤ m. Then we can say that

TK (3) ⊂ Λ

(⋂
i≤m

Wi,K

)
.

Fix any j ≤ m. Since W j
◦
6= ∅, we can find ξ such that ξ ∈ Λ(W j

◦) ⊂ Λ j . Since −ψ(ξ) + W j
◦ contains a

neighbourhood of 0 and H is a locally compact Abelian group, there is a neighbourhood U of 0 in H such that
U −U ⊂ −ψ(ξ)+W j

◦. Let

I = {t ∈ H : t +Wi = Wi for all i ≤ m}.

Since Wi = Wi
◦ for all i ≤ m,

{t ∈ H : t +Wi
◦
= Wi

◦ for all i ≤ m} = I.

So

(U + I )− (U + I ) = U −U + I

⊂ −ψ(ξ)+W j
◦
+ I

= −ψ(ξ)+W j
◦.

Note that U + I is a neighbourhood of 0 in H .
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We claim that⋂
{−ψ(s)+Wi : s ∈ Λi , i ≤ m} = I.

Notice first that

0 ∈
⋂
{−ψ(s)+Wi : s ∈ Λi , i ≤ m} 6= ∅.

For any c ∈
⋂
{−ψ(s)+ Wi : s ∈ Λi , i ≤ m}, ψ(Λi ) ⊂ −c + Wi for all i ≤ m. So ψ(Λi ) = Wi ⊂ −c + Wi for all

i ≤ m. In fact, Wi = −c + Wi for all i ≤ m, since Wi − Wi is compact (see [21, Prop. 5.2] for the detailed proof).
Thus

⋂
{−ψ(s)+Wi : s ∈ Λi , i ≤ m} ⊂ I . On the other hand, for any c′ ∈ I , c′ +Wi = Wi for all i ≤ m, and so

−ψ(s)+ c′ +Wi = −ψ(s)+Wi for all s ∈ Λi and i ≤ m.

Since 0 ∈
⋂
{−ψ(s)+Wi : s ∈ Λi , i ≤ m},

c′ ∈ −ψ(s)+Wi for all s ∈ Λi and i ≤ m.

This shows that c′ ∈
⋂
{−ψ(s)+Wi : s ∈ Λi , i ≤ m}. Therefore the claim is proved.

So now we have
⋂
{(−ψ(s)+Wi )\ (U + I ) : s ∈ Λi , i ≤ m} = ∅. Since each (−ψ(s)+Wi )\ (U + I ) is compact,

by the finite intersection property for compact sets there is a finite set F ⊂ L such that F ⊂
⋃

i≤m Λi and⋂
{(−ψ(s)+Wi ) \ (U + I ) : s ∈ Λi ∩ F, i ≤ m} = ∅.

Thus U + I ⊃
⋂
{−ψ(s)+Wi : s ∈ Λi ∩ F, i ≤ m} ⊃

⋂
i≤m Wi,F . Then for the compact set F ⊂ Rd ,

TF (3)− TF (3) ⊂ Λ

(⋂
i≤m

Wi,F

)
− Λ

(⋂
i≤m

Wi,F

)
⊂ Λ((U + I )− (U + I ))

⊂ Λ(−ψ(ξ)+W j
◦)

⊂ −ξ + Λ j . � (5.1)

Theorem 5.2. Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal. Suppose
that 3 is an inter-model multi-colour set. Then 3 admits an algebraic coincidence.

Proof. From the assumption there is a following cut and project scheme:

Rd π1
←− Rd

× H
π2
−→ H,

∪

L̃
(5.2)

where H is a locally compact Abelian group, L̃ is a lattice in Rd
× H , π1 and π2 are canonical projections, π1|L̃

is one-to-one, and π2(L̃) is dense in H . Let L = π1(L̃). We define ψ : L → H by ψ(x) = π2(π
−1
1 (x)). Then

s +Λ(Wi
◦) ⊂ Λi ⊂ s +Λ(Wi ) for some s ∈ Rd and non-empty compact set Wi with Wi = Wi

◦ for each i ≤ m with
respect to the CPS (5.2). We can assume that Λ(Wi

◦) ⊂ Λi ⊂ Λ(Wi ) without loss of generality.
From Lemma 5.1, we have

TF (3)− TF (3) ⊂ −ξ + Λ j (5.3)

for some compact set F and ξ ∈ Λ(Wi
◦). Let K = F +

⋃
i≤m(supp(Ti )). Since every 3-cluster is legal, there exist

α ∈ Λk for some k ≤ m and N ∈ Z+ satisfying 3 ∩ K ⊂ z + ΦN (α) for some z ∈ Rd . Note that for any β ∈ Λk ,

z + QN (β − α)+ ΦN (α) = z + ΦN (β).

Thus QN (β − α)+ (3 ∩ K ) ⊂ z + ΦN (β) and so

−z + QN (β − α)+ (3 ∩ K ) ⊂ 3.
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We note further that

−z + QN (β − α)+ (3 ∩ K ) ⊂ 3 ∩ (−z + QN (β − α)+ K ).

By the choice of K and the fact that 3+A is a tiling,

−z + QN (β − α)+ (3 ∩ F) = 3 ∩ (−z + QN (β − α)+ F).

So−z+ QN (β−α) ∈ TF (3). This shows that−z+ QN (Λk −α) ∈ TF (3). Thus QN (Λk −Λk) ⊂ TF (3)− TF (3).
By (5.3) and the fact that QN+lΞ (3) ⊂ QN (Λk − Λk) for some l ∈ Z+ by the primitivity of the substitution, there
exist M ∈ Z+ and ξ ∈ Λ j such that QMΞ (3) ⊂ Λ j − ξ . This completes the proof. �

The following theorem states the main result of this paper.

Theorem 5.3. Let 3 be a primitive substitution Delone multi-colour set such that every 3-cluster is legal and 3 has
FLC. Then the following are equivalent:

(1) 3 has pure point dynamical spectrum;
(2) 3 admits an algebraic coincidence;
(3) 3 is an inter-model multi-colour set.

Proof. The proof goes as follows:

(1)⇔ (2) by Theorem 3.13.
(2)⇔ (3) by Theorems 4.13 and 5.2. �

Any tiling T can be converted into a Delone multiset by simply choosing a point for each tile so that the chosen
points for tiles of the same type are in the same relative position in the tiles. So we give a corresponding result of
Theorem 5.3 on substitution tilings.

The following lemma is taken from Lecture Note of Boris Solomyak. We provide the proof here, since there is no
direct reference for it. One can see similar arguments in [18,33,23].

Lemma 5.4. Let T be a repetitive fixed point of a primitive substitution such that T =
⋃m

j=1(T j + Λ j ). Then
3T := (Λi )i≤m is a primitive substitution Delone multiset and every 3T -cluster is legal.

Proof. Let ω be the corresponding tile-substitution for T . Then

T =
m⋃

j=1

(ω(T j )+ QΛ j ) =

m⋃
j=1

(
m⋃

i=1

(Ti +Di j )+ QΛ j

)
=

m⋃
i=1

(
Ti +

m⋃
j=1

(QΛ j +Di j )

)
.

Thus

Λi =

m⋃
j=1

(QΛ j +Di j ), i ≤ m.

Every 3T -cluster is legal from Remark 3.12. �

Theorem 5.5. Let T be a repetitive fixed point of a primitive substitution with FLC. Then the following are equivalent:

(1) T has pure point dynamical spectrum;
(2) T admits an overlap coincidence;
(3) 3T is an inter-model multi-colour set.

Proof. The proof goes as follows:

(1)⇔ (2) by Corollary 3.5.
(2)⇔ (3) by Propositions 3.10, 3.11 and Theorem 5.3. �
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6. Further study

When the legality in Theorem 5.3 is dropped, finding the corresponding substitution tilings is not obvious. However
with an assumption of repetitivity of 3, we get a notion of multi-tilings which is introduced in [19]. Can Theorem 5.3
be extended when 3 is assumed to be only repetitive?

In lattice substitution Delone multi-colour sets, modular coincidence was introduced as a condition equivalent to
pure point diffractivity, and it was proved to be computable (see [20,23]). Is there an algorithm for checking algebraic
coincidence in substitution Delone multi-colour set?

There is a considerable amount of ongoing work on Pisot-type substitution sequences for the study of number
theory, discrete geometry, geometrical combinatorics, mathematical quasicrystals and spectral theory. As a special
case of substitutions there are Pisot substitutions in one dimension each of whose substitution matrices has one
eigenvalue strictly bigger than 1 and other eigenvalues strictly between 0 and 1 in modulus. It has been conjectured that
every Pisot substitution dynamical system in one dimension has pure point spectrum. Here the algebraic coincidence
is an alternative way to determine pure point spectrum in the Pisot substitutions. Throughout correspondence with
Valerie Berthe, it is noted that the algebraic coincidence is necessary if an exclusive inner point exists, which is
conjectured to hold for every Pisot unit substitution in one dimension (see [1]). Does every Pisot unit substitution admit
algebraic coincidence? Bernd Sing’s thesis [30] deals with this problem and provides many equivalence properties to
the algebraic coincidence.

Although we have shown in this paper the equivalence between the notions of inter-model sets and pure point
spectrum in substitution Delone multi-colour sets, we do not know the measure of the boundary of the window of the
inter-model set. When the underlying structure of substitution Delone multi-colour set is on a lattice, we know that the
measure of the boundary is zero from [20,23]. It is a remaining question that in substitution Delone multi-colour sets
(not assumed to be on lattices) or in Delone multi-colour sets if there is any inter-model set with pure point spectrum
whose window has boundary of non-zero measure.

In [3] regular model sets are characterized in terms of their associated dynamical systems. Can inter-model sets be
characterized in terms of their associated dynamical systems as well? Would it be possible to extend the equivalence
of inter-model sets and pure point spectra for general model sets (not assumed to be substitution Delone sets)?
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